Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS One ; 18(2): e0281813, 2023.
Article in English | MEDLINE | ID: covidwho-2256141

ABSTRACT

BACKGROUND AND PURPOSE: Bacterial infections represent a major cause of morbidity and mortality in cirrhotic patients. Our aim was to assess the incidence of bacterial infections, in particular due to multidrug-resistant organisms (MDROs) before and after the introduction of the antimicrobial stewardship program, "Stewardship Antimicrobial in VErona" (SAVE). In addition, we also analysed the liver complications and the crude mortality during the whole follow up. METHODS: We analysed 229 cirrhotic subjects without previous hospitalization for infections enrolled at the University Verona Hospital from 2017 to 2019 and followed up until December 2021 (mean follow-up 42.7 months). RESULTS: 101 infections were recorded and 31.7% were recurrent. The most frequent were sepsis (24.7%), pneumonia (19.8%), spontaneous bacterial peritonitis (17.8%). 14.9% of infections were sustained by MDROs. Liver complications occurred more frequently in infected patients, and in case of MDROs infections with a significantly higher MELD and Child-Pugh score. In Cox regression analysis, mortality was associated with age, diabetes and bacterial infections episodes (OR 3.30, CI 95%: (1.63-6.70). Despite an increase in total infections over the past three years, a decrease in the incidence rate in MDROs infections was documented concurrently with the introduction of SAVE (IRD 28.6; 95% CI: 4.6-52.5, p = 0.02). CONCLUSIONS: Our study confirms the burden of bacterial infections in cirrhotic patients, especially MDROs, and the strong interconnection with liver complications. The introduction of SAVE decreased MDROs infections. Cirrhotic patients require a closer clinical surveillance to identify colonized patients and avoid the horizontal spread of MDROs in this setting.


Subject(s)
Antimicrobial Stewardship , Bacterial Infections , Humans , Cohort Studies , Bacterial Infections/complications , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Enterococcus , Gram-Negative Bacteria , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology
3.
Hematol Oncol ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2228595

ABSTRACT

Main aim of this systematic review is to quantify the risk and identify predictors of clinical evolution of SARS-CoV-2 in hematological patients compared to different control populations. Two independent reviewers screened the literature assessing clinical outcomes of SARS-CoV-2 infection in adult patients with active hematological malignancies published up to June 2021. Primary outcome was COVID-19 related mortality, secondary outcomes were hospital and intensive-care admission, mechanical ventilation (MV), and thromboembolic events. Variables related to study setting, baseline patients' demographic, comorbidities, underlying hematological disease, ongoing chemotherapy, COVID-19 presentation, and treatments were extracted. A total of 67 studies including 10,061 hematological patients and 111,143 controls were included. Most of the studies were retrospective cohorts (51 studies, 76%) and only 19 (13%) provided data for a control group. A significant increased risk of clinical progression in the hematological population compared to the controls was found in terms of COVID-19 related mortality (OR, 2.12; 95% CI, 1.77-2.54), hospitalization (OR, 1.98; 95% CI, 1.15-3.43), intensive-care admission (OR, 1.77; 95% CI, 1.38-2.26), and MV (OR, 2.17; 95% CI, 1.71-2.75). The risk remained significantly higher in the subgroup analysis comparing hematological patients versus solid cancer. Meta-regression analysis of uncontrolled studies showed that older age, male sex, and hypertension were significantly related to worse clinical outcomes of COVID-19 in hematological population. Older age and hypertension were found to be associated also to thromboembolic events. In conclusion, hematological patients have a higher risk of COVID-19 clinical progression compared to both the general population and to patients with solid cancer.

4.
Lancet Reg Health Eur ; 21: 100467, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2122678

ABSTRACT

The COVID-19 pandemic saw a massive investment into collaborative research projects with a focus on producing data to support public health decisions. We relay our direct experience of four projects funded under the Horizon2020 programme, namely ReCoDID, ORCHESTRA, unCoVer and SYNCHROS. The projects provide insight into the complexities of sharing patient level data from observational cohorts. We focus on compliance with the General Data Protection Regulation (GDPR) and ethics approvals when sharing data across national borders. We discuss procedures for data mapping; submission of new international codes to standards organisation; federated approach; and centralised data curation. Finally, we put forward recommendations for the development of guidelines for the application of GDPR in case of major public health threats; mandatory standards for data collection in funding frameworks; training and capacity building for data owners; cataloguing of international use of metadata standards; and dedicated funding for identified critical areas.

5.
Biomedicines ; 10(10)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2065696

ABSTRACT

The objective of this study was to assess the association between patients' epidemiological characteristics and comorbidities with SARS-CoV-2 infection severity and related mortality risk. An umbrella systematic review, including a meta-analysis examining the association between patients' underlying conditions and severity (defined as need for hospitalization) and mortality of COVID-19, was performed. Studies were included if they reported pooled risk estimates of at least three underlying determinants for hospitalization, critical disease (ICU admission, mechanical ventilation), and hospital mortality in patients diagnosed with SARS-CoV-2 infection. Evidence was summarized as pooled odds ratios (pOR) for disease outcomes with 95% confidence intervals (95% CI). Sixteen systematic reviews investigating the possible associations of comorbidities with severity or death from COVID-19 disease were included. Hospitalization was associated with age > 60 years (pOR 3.50; 95% CI 2.97-4.36), smoking habit (pOR 3.50; 95% CI 2.97-4.36), and chronic pulmonary disease (pOR 2.94; 95% CI 2.14-4.04). Chronic pulmonary disease (pOR 2.82; 95% CI 1.92-4.14), cerebrovascular disease (pOR 2.74; 95% CI 1.59-4.74), and cardiovascular disease (pOR 2.44; 95% CI 1.97-3.01) were likely to be associated with increased risk of critical COVID-19. The highest risk of mortality was associated with cardiovascular disease (pOR 3.59; 95% CI 2.83-4.56), cerebrovascular disease (pOR 3.11; 95% CI 2.35-4.11), and chronic renal disease (pOR 3.02; 95% CI 2.61-3.49). In conclusion, this umbrella systematic review provides a comprehensive summary of meta-analyses examining the impact of patients' characteristics on COVID-19 outcomes. Elderly patients and those cardiovascular, cerebrovascular, and chronic renal disease should be prioritized for pre-exposure and post-exposure prophylaxis and early treatment.

6.
Clin Microbiol Infect ; 28(8): 1057-1065, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1734284

ABSTRACT

BACKGROUND: A significant increased risk of complications and mortality in immunocompromised patients affected by COVID-19 has been described. However, the impact of COVID-19 in solid organ transplant (SOT) recipients is an issue still under debate, due to conflicting evidence that has emerged from different observational studies. OBJECTIVES: We performed a systematic review with a meta-analysis to assess the clinical outcome in SOT recipients with COVID-19 compared with the general population. DATA SOURCES: PubMed-MEDLINE and Scopus were independently searched until 13 October 2021. STUDY ELIGIBILITY CRITERIA: Prospective or retrospective observational studies comparing clinical outcome in SOT recipients versus general populations affected by COVID-19 were included. The primary endpoint was 30-day mortality. PARTICIPANTS: Participants were patients with confirmed COVID-19. INTERVENTIONS: Interventions reviewed were SOTs. METHODS: The quality of the included studies was independently assessed with the Risk of Bias in Non-randomized Studies of Interventions tool for observational studies. The meta-analysis was performed by pooling ORs retrieved from studies providing adjustment for confounders using a random-effects model with the inverse variance method. Multiple subgroups and sensitivity analyses were conducted to investigate the source of heterogeneity. RESULTS: A total of 3501 articles were screened, and 31 observational studies (N = 590 375; 5759 SOT recipients vs. 584 616 general population) were included in the meta-analyses. No difference in 30-day mortality rate was found in the primary analysis, including studies providing adjustment for confounders (N = 17; 3752 SOT recipients vs. 159 745 general population; OR: 1.13; 95% CI, 0.94-1.35; I2 = 33.9%). No evidence of publication bias was reported. A higher risk of intensive care unit admission (OR: 1.56; 95% CI, 1.03-2.63) and occurrence of acute kidney injury (OR: 2.50; 95% CI, 1.81-3.45) was found in SOT recipients. CONCLUSIONS: No increased risk in mortality was found in SOT recipients affected by COVID-19 compared with the general population when adjusted for demographic and clinical features and COVID-19 severity.


Subject(s)
COVID-19 , Organ Transplantation , COVID-19/epidemiology , Humans , Organ Transplantation/adverse effects , Prospective Studies , Retrospective Studies , Transplant Recipients
7.
Clin Microbiol Infect ; 28(5): 672-680, 2022 May.
Article in English | MEDLINE | ID: covidwho-1729650

ABSTRACT

SCOPE: This guideline addresses the indications for direct testing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic individuals in health care facilities, with the aim to prevent SARS-CoV-2 transmissions in these settings. The benefit of testing asymptomatic individuals to create a safe environment for patients and health care workers must be weighed against potential unintended consequences, including delaying necessary treatments owing to false positive results and lower quality of care owing to strict isolation measures. METHODS: A total of nine PICOs (population, intervention, comparison, outcome) on the topic of testing asymptomatic individuals was selected by the panel members. Subsequently, a literature search for existing guidelines and systematic reviews was performed on PubMed, Epistemonikos, and RecMap using relevant filters available in each database. Data on article/recommendation type, setting, target population, intervention, and quality of the evidence were extracted. Credibility of the systematic reviews was evaluated using the AMSTAR tool, and level of agreement with available recommendation was evaluated with the AGREE II score. Because the evidence available from systematic reviews was deemed insufficiently updated to formulate relevant recommendations, an additional search targeting relevant guidance documents from major public health institutions and original studies was performed. Provisional recommendations were discussed via web conferences until agreement was reached, and final recommendations were formulated according to the GRADE approach. RECOMMENDATIONS: Recommendations were formulated regarding systematic testing in asymptomatic individuals upon admission to a health care setting, during hospital stay, before elective procedures, and before scheduled nonsurgical procedures. Moreover, recommendations regarding testing of asymptomatic visitors, personal caregivers, and health care workers in health care facilities were presented. Recommendations also were given on contact tracing in asymptomatic patients or health care workers and the possibility of a negative screening test to shorten the quarantine period. Furthermore, if applicable, recommendations were specified to transmission rate and vaccination coverage.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/prevention & control , Delivery of Health Care , Health Personnel , Humans , Quarantine
8.
Arterioscler Thromb Vasc Biol ; 40(12): 2975-2989, 2020 12.
Article in English | MEDLINE | ID: covidwho-1105571

ABSTRACT

OBJECTIVE: Pulmonary thrombosis is observed in severe acute respiratory syndrome coronavirus 2 pneumonia. Aim was to investigate whether subpopulations of platelets were programmed to procoagulant and inflammatory activities in coronavirus disease 2019 (COVID-19) patients with pneumonia, without comorbidities predisposing to thromboembolism. Approach and Results: Overall, 37 patients and 28 healthy subjects were studied. Platelet-leukocyte aggregates, platelet-derived microvesicles, the expression of P-selectin, and active fibrinogen receptor on platelets were quantified by flow cytometry. The profile of 45 cytokines, chemokines, and growth factors released by platelets was defined by immunoassay. The contribution of platelets to coagulation factor activity was selectively measured. Numerous platelet-monocyte (mean±SE, 67.9±4.9%, n=17 versus 19.4±3.0%, n=22; P<0.0001) and platelet-granulocyte conjugates (34.2±4.04% versus 8.6±0.7%; P<0.0001) were detected in patients. Resting patient platelets had similar levels of P-selectin (10.9±2.6%, n=12) to collagen-activated control platelets (8.7±1.5%), which was not further increased by collagen activation on patient platelets (12.4±2.5%, P=nonsignificant). The agonist-stimulated expression of the active fibrinogen receptor was reduced by 60% in patients (P<0.0001 versus controls). Cytokines (IL [interleukin]-1α, IL-1ß, IL-1RA, IL-4, IL-10, IL-13, IL, 17, IL-27, IFN [interferon]-α, and IFN-γ), chemokines (MCP-1/CCL2 [monocyte chemoattractant protein 1]), and growth factors (VEGF [vascular endothelial growth factor]-A/D) were released in significantly larger amounts upon stimulation of COVID-19 platelets. Platelets contributed to increased fibrinogen, VWF (von Willebrand factor), and factor XII in COVID-19 patients. Patients (28.5±0.7 s, n=32), unlike controls (31.6±0.5 s, n=28; P<0.001), showed accelerated factor XII-dependent coagulation. CONCLUSIONS: Platelets in COVID-19 pneumonia are primed to spread proinflammatory and procoagulant activities in systemic circulation.


Subject(s)
Blood Platelets/metabolism , COVID-19/blood , Thromboembolism/etiology , Aged , Aged, 80 and over , COVID-19/complications , Cytokines/metabolism , Female , Flow Cytometry , Humans , Male , Middle Aged , Pandemics , Prognosis , Thromboembolism/blood
SELECTION OF CITATIONS
SEARCH DETAIL